If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+2x^2=120
We move all terms to the left:
10x+2x^2-(120)=0
a = 2; b = 10; c = -120;
Δ = b2-4ac
Δ = 102-4·2·(-120)
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{265}}{2*2}=\frac{-10-2\sqrt{265}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{265}}{2*2}=\frac{-10+2\sqrt{265}}{4} $
| 40=4q | | 15-w/4=-52 | | n^2-4n-30=2 | | 10x-20=30+50 | | 11=x/3-16 | | –2m=–3m−2 | | 44x-24=216 | | 3x+13+2x+1=180 | | 10t+6=9t | | 13x+169=52 | | -7q=-42 | | x+1+x+2x+3=48 | | 8(2x-6)=-122 | | 140d+895=1875 | | 3x^2+2x+2=10 | | 34n-18=n4-4 | | 4x+45+135+45+135=720 | | 4d=–10+2d | | 2u-u+2u+5u=16 | | −7x-3x+2=−8x-8 | | 23w+11=18w-4 | | -20=-2s | | –10+4f=–6f | | f/6=2.50 | | 11a-12=8a-6 | | 9a=82 | | 5u−10=10u | | x^2-63x-120=0 | | 12m-5=8m+19 | | 2u−u+2u+5u=16 | | -5x+45-15=-10x+50 | | 4x+9=-2x+57 |